Skip to contents

Quadratic discriminant analysis. Calls MASS::qda() from package MASS.

Details

Parameters method and prior exist for training and prediction but accept different values for each. Therefore, arguments for the predict stage have been renamed to predict.method and predict.prior, respectively.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("classif.qda")
lrn("classif.qda")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3learners, MASS

Parameters

IdTypeDefaultLevelsRange
methodcharactermomentmoment, mle, mve, t-
nuinteger-\((-\infty, \infty)\)
predict.methodcharacterplug-inplug-in, predictive, debiased-
predict.prioruntyped--
prioruntyped--

References

Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4/.

See also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.nnet, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifQDA

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifQDA$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("classif.qda")
print(learner)

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

# importance method
if("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
}
#> <LearnerClassifQDA:classif.qda>: Quadratic Discriminant Analysis
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3learners, MASS
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: multiclass, twoclass
#> Error in qda.default(x, grouping, ...): some group is too small for 'qda'
OSZAR »